
Proceedings of the Oceans 2002 MTS/IEEE Conference, October 29-31, 2002 Biloxi, Mississippi

1234

Implementation of an Important Wave Model on Parallel Architectures

Tim Campbell
Mississippi State University

John Cazes
Northrop Grumman IT

Erick Rogers
Naval Research Laboratory SSC

Mississippi State University
1103 Balch Blvd., Rm. 248

Stennis Space Center, MS, 39529, USA
tjcamp@navo.hpc.mil

Abstract- SWAN (Simulating WAves Nearshore), developed
at the Delft University of Technology, is an important third
generation wave model used to simulate short-crested wind-
generated waves in shallow water areas such as coastal regions
and inland waters. The model solves a four-dimensional (2
spatial dimensions, wave direction, and wave frequency)
spectral action balance equation using a semi-implicit upwind
scheme. Relative to other less advanced wave models, SWAN is
more computationally demanding, and a parallel version is
necessary in order to decrease turn-around time, improve the
model resolution for large coastal regions, and migrate SWAN
into Navy operational use.

In this paper we present a new parallel implementation of
SWAN using a pipelined parallel approach which does not alter
the order of operations in the sequential numerical algorithm.
The implementation uses OpenMP compiler directives and runs
on shared-memory multiprocessor computers. This approach
represents a non-traditional, i.e., not loop-level, way of using
OpenMP. Performance measurements show that turn-around
time for high-resolution model applications can be significantly
reduced with the parallel implementation. The parallel
implementation has been verified and model output matches
"bit-for-bit" with the original sequential code for both
stationary and non-stationary cases. The new parallel code has
already been incorporated into the next official release of SWAN
and is beginning transition into operational use.

I. INTRODUCTION

For over 30 years the Navy has been performing routine
operational wave forecasts to support fleet operational and
training exercises. During this time wave modeling
technologies have undergone significant advances in
representation of the complex dynamics that contribute to
wave generation and interaction [1]. Modern wave models
used in weather prediction centers around the world are
known as “third-generation” models. Wave prediction for
oceanic basins and deep water is performed using third-
generation models, such as, WAM [2] and WAVEWATCH
III [3]. The changing focus of naval warfare from global
threat to regional conflict has introduced the requirement for
accurate and timely wave forecasts for the littoral zone.
Although the deep water models have been adapted to model
the smaller, high-resolution regions, they lacked the
sophistication necessary for estimating coastal wave
conditions. Presently second generation model STWAVE
[4], with forcing at the offshore boundary provided by WAM,
is used for Navy operational wave forecasting in the high
resolution coastal domains. In the near future STWAVE will
be replaced by the more advanced third generation model,
known as SWAN (Simulating WAves Nearshore) [5].
SWAN was developed at the Delft University of Technology
under the ONR Advanced Wave Prediction Program.

The sophisticated technologies developed in SWAN have
proven successful in providing accurate wave estimates in the

littoral region. However, in addition to accuracy, operational
wave estimates must be provided in a timely manner,
otherwise, the information is useless. SWAN is more
computationally demanding than STWAVE, thus, to make
the model operationally viable, it is necessary to take
advantage of parallel processing to reduce turn-around time.
In this paper we present an implementation of SWAN for
parallel computers that satisfactorily addresses the issue of
turn-around time. Section II describes the SWAN model and
its implementation. Section III describes the details of the
parallel implementation of SWAN. Performance
measurements of the parallel code, along with description of
a technique for estimating performance, are detailed in
Section IV. A summary is given in Section V.

II. MODEL DESCRIPTION

Thoughtful observation of the ocean, especially on a
windy day, will lead one to recognize that waves on the ocean
surface can be characterized as irregular and random. In
SWAN this stochastic process is modeled using what is
known as a phase-averaging approach which, instead of
solving for the actual free surface, describes the wave
conditions at a given location as a linear superposition of
wave energies defined in terms of their frequency and
direction. In this context, the dependent variable is the
spectral density of wave action (analogous to particle
dynamics). The evolution of the spectral action density is
described by the action balance equation which, for Cartesian
coordinates, is

1

n

x y i
i

N c N c N c N c N S
t x y σ θ

=

∂ ∂ ∂ ∂ ∂+ + + + =
∂ ∂ ∂ ∂σ ∂θ ∑ . (2.1)

The action density N is equal to the energy density divided by
the wave frequency. The independent variables are the time
t, the location in geographic space (x,y), and the location in
spectral space (σ,θ), that is, the wave frequency σ, and the
wave direction θ. The propagation velocity in each
independent dimension is specified by the appropriate ca.
The source term expressed on the right-hand side of the
action balance equation represents the effects of generation,
dissipation, and nonlinear wave-wave interactions.

Integration of the action balance equation is implemented
with finite difference schemes in all five dimensions using a
constant resolution in the discretization. The numerical
propagation schemes applied are implicit second-order
upwind in the geographic space and implicit first-order
upwind, supplemented with a central approximation, in the
spectral space. The implicit nature of the geographic
propagation schemes used by SWAN is the primary
difference between SWAN and other third generation wave

Proceedings of the Oceans 2002 MTS/IEEE Conference, October 29-31, 2002 Biloxi, Mississippi

1235

models, e.g. WAM and WAVEWATCH III. For a chosen
direction of propagation, the upwind scheme implies that the
state at each geographic grid point is dependent only on the
state in the upwind grid points. This permits decomposition
of the spectral space into four quadrants, as shown in Fig. 1,
according to the wave propagation direction. With the
exception of interactions due to refraction, frequency shifting,
and nonlinear source terms, the solution process in each
quadrant can be carried out independently from the other
quadrants. To properly account for the interactions between
quadrants, the whole solution process involves iteratively
computing a sequence of four forward marching sweeps
across the geographic grid, as illustrated in Fig. 1, with each
sweep utilizing only boundary conditions or previously
calculated points in the upwind direction. The solution of a
submatrix (spectral space) is required at each geographic grid
point. When no currents are present and the depth is
stationary the submatrix is tridiagonal and solved directly.
Otherwise, the submatrix is banded and solved using an
iterative method.

The SWAN implementation is full-featured with
numerous user configurable options. The model can be run
as either stationary or non-stationary and using either
Cartesian or spherical coordinates. SWAN can be readily
nested in the oceanic scale models WAM and
WAVEWATCH III. The SWAN code is sequential,
consisting of approximately 30,000 logical lines of code with
over 200 subroutines written mostly in Fortran 77. A small
number of Fortran 90 constructs have been added in recent
years.

III. APPROACH

The first step in creating a parallel program from a
sequential one involves decomposing the computation into

tasks that can be exploited by the parallel program. In
SWAN we identify as a task the computation of the state,
N(σ,θ), at a geographic grid point. The next step is to
examine the data and numerical algorithms to determine the
dependencies and potential for concurrent computation. Fig.
2 illustrates the task dependencies (arrows) and available
concurrency (dashed lines) for sweeps 1 and 2. The
dependencies for a task arise from the upwind stencil are
understood by following the arrows from tail to head. In
other words, for sweep 1, the task at grid point (i,j) is
dependent on the completion of the tasks at the upwind grid
points (i-1,j) and (i,j-1). Tasks that do not share
dependencies (those connected with dashed lines in Fig. 2)
can be computed concurrently. These tasks lie along a
diagonal that is perpendicular to the sweep direction as
defined in Fig. 1.

Based on the defined tasks, their dependencies, and the
identified concurrency we chose to implement a pipelined
parallel approach [6]. Pipelining is commonly used in
situations in which several operations must be completed in a
sequence {O1,…,On} and those operations have the property
that some steps of Oi+1 can be carried out before operation Oi
is finished. In SWAN we consider the rows of the
geographic grid as the sequence of operations in which the
steps of an operation consist of computing the state at each
grid point in a row. The steps of a pipelined parallel
approach are illustrated in Fig. 3 for sweep 1 on a 4x6
geographic grid with 3 processors. Each row of the
geographic grid is assigned to a processor (P0, P1, …) in a
round-robin fashion. The computation begins with the first
upwind grid point; computation of the state at downwind grid
points begins as dependencies are satisfied. One can think of
the processors “flowing” across the grid in the downwind
direction. Note that upon completing a row a processor
begins computing on the next available row (see steps 5, 6,
and 7 in Fig. 3). The pipelined parallel steps for sweeps 2, 3,
and 4 follow a similar pattern, the difference being the
starting grid point and the “flow” direction. For a sequential
program a sweep on a 4x6 geographic grid requires 24 steps.
From Fig. 3 we see that with the pipelined parallel approach
on 3 processors the number of steps has been reduced to 10.

We implemented the pipelined parallel approach in
SWAN using OpenMP compiler directives [7]. The
directives produce multithreaded code that runs on shared-
memory multiprocessor computers. The code modifications

Sweep 1 (0 - 90°) Sweep 2 (90 - 180°)

Sweep 3 (180 - 270°) Sweep 4 (270 - 360°)

Fig. 1. Sweep technique used in SWAN. The spectral space
is decomposed into four quadrants based on propagation
direction. The solution process for each quadrant consists of
a sweep over the geographic grid in the chosen propagation
direction, as indicated by the arrow. The open circles
indicate the upwind grid points for a corresponding
computational grid point (filled circle). Due to interactions
between quadrants the complete solution is obtained
iteratively, where each iteration step includes the four
sweeps.

Sweep 1 Sweep 2

Fig. 2. Dependency and concurrency on a 4x6 geographic
grid for sweeps 1 and 2 of SWAN. The horizontal and
vertical arrows indicate dependencies; computation at a grid
point is dependent on completion of computation at upwind
grid points. Diagonal dashed lines connect points with no
dependencies among them that can be computed in parallel.

Proceedings of the Oceans 2002 MTS/IEEE Conference, October 29-31, 2002 Biloxi, Mississippi

1236

in the main computational routine (which is called at each
time step in a non-stationary application) in SWAN are
shown in Fig. 4. The OpenMP directive lines begin with the
“!$OMP” sentinel. After some pre-iteration setup and
allocation of shared (visible to all threads) work arrays the
parallel region begins, as indicated by the “!$OMP
PARALLEL DEFAULT(SHARED)” directive, at which
point a team of threads is started, the number of which is
determined by the programming environment. The
“DEFAULT(SHARED)” instruction indicates that by default
variables in the routine will be shared among threads unless
specified otherwise. Once the parallel region begins each
thread allocates its own private (i.e., visible only to itself)
work arrays. The iterative solution with sweeps across the
geographic grid is controlled by the ITER and SWPDIR
loops. The pipelined parallel approach is applied using the
“!$OMP DO SCHEDULE(STATIC,1)” directive on the IY
loop. This directive instructs the compiler to statically assign
iterations of the IY loop to threads in a round-robin fashion.
The LLOCK array, which is reset prior to beginning each
sweep, is a logical array that guarantees each thread cannot
proceed to the next grid point until the dependency in the Y
direction for that grid point has been satisfied. Dependencies
in the X direction are satisfied by virtue of the row
assignment to a thread. After the state at grid point (IX,IY) is
computed by the routine SWOMPU, the thread processing
that grid point signals it is finished by setting LLOCK(IX,IY)
to FALSE. The “!$OMP FLUSH” directive instructs the
compiler to ensure that each thread in the team has a
consistent view of variables in memory. There is an implied
barrier (thread synchronization) at the end of the IY loop to

ensure each thread remains on the same sweep. The explicit
barrier at the end of the SWPDIR loop ensures all threads are
finished with the sweeps before checking convergence. Once
the iterations are completed each thread deallocates its private
work arrays. The “!$OMP END PARALLEL” directive
signals the end of the parallel region, where the team of
threads is terminated and only a single or master thread
continues.

It should be noted that since none of the order of
operations in SWAN have been changed the new parallel
code matches “bit-for-bit” with the original sequential code.
This has been verified with numerous tests on a variety of
platforms. Because the OpenMP code modifications are in
the form of compiler directives which appear syntactically as
comments to a non-OpenMP compiler, the new parallel code
can still be compiled with a non-OpenMP compiler to run on
a single processor machine. No changes have been made to
the user interface.

IV. RESULTS AND DISCUSSION
To understand the parallel performance of SWAN it is

useful to examine two quantities known as speedup and
efficiency. For a fixed problem size, the speedup on p
processors over the single processor execution is defined as

1p pS t t= , where t1 is the sequential execution time and tp is
the execution time on p processors. Theoretically, the
speedup can never exceed the number of processors. The
efficiency, defined as p pE S p= , is a measure of the
fraction of time for which a processor is usefully employed.
In an ideal parallel system and implementation, the speedup

P0 P0
P1

Step 1 Step 2 Step 3

P0
P1
P2

P0

Step 4 Step 5

P1

Step 6

P2

Step 7 Step 8 Step 9

P1
P2 P2

P0 P0
P1

P0
P1
P2

P0
P1 P1
P2 P2

Fig. 3. Pipelined parallel steps for sweep 1 on a 4x6
geographic grid with 3 processors. Rows are assigned to
processors (P0, P1, …) in a round-robin fashion, as
indicated by the dashed boxes. Black circles represent grid
points for which the state is computed during the current
step; grey circles represent grid points for which the state is
already computed. Upon completing a row a processor
begins the next available row, as seen in steps 5, 6, and 7.

SUBROUTINE SWCOMP
…pre-iteration setup…
…allocate shared work arrays…

!$OMP PARALLEL DEFAULT(SHARED)
!$OMP+PRIVATE(ITER,SWPDIR,…)

…allocate private work arrays…
DO ITER = 1, ITERMX

DO SWPDIR = 1, 4
…set sweep parameters…
…set LLOCK array…

!$OMP DO SCHEDULE(STATIC,1)
DO IY = IY1, IY2, -IDY

DO IX = IX1, IX2, -IDX
DO WHILE(LLOCK(IX,IY+IDY)

!$OMP FLUSH
END DO
CALL SWOMPU(…,IX,IY,…)
LLOCK(IX,IY) = .FALSE.

END DO
END DO

END DO
!$OMP BARRIER

…check convergence…
END DO
…deallocate private work arrays…

!$OMP END PARALLEL
…deallocate shared work arrays…
END SUBROUTINE SWCOMP

Fig. 4. Implementation of the pipelined parallel approach in
the main computational routine of SWAN using OpenMP.
OpenMP compiler directives begin with the !$OMP sentinel.
The ellipses indicate actual code omitted for clarity.

Proceedings of the Oceans 2002 MTS/IEEE Conference, October 29-31, 2002 Biloxi, Mississippi

1237

is equal to p and the efficiency is equal to one. In practice,
the speedup is less than p and efficiency is between zero and
one, depending on the design of the parallel system and the
parallel program. Exceptions to this occur for certain cache-
bound applications which may exhibit superlinear speedup
and efficiency greater than unity.

Given the nature of the pipelined parallel approach in
SWAN we can derive analytical expressions for the ideal
parallel performance. We assume, for a given application,
that the time to compute the state at a geographic grid point is
the same for all grid points. We also assume there is zero
overhead due to thread management. Based on these
assumptions and a simple counting process the expression for
the ideal efficiency of a single sweep is derived as

 () (), ;
1 modideal

xy pE x y p
x y p y p

=
+ −  

, (4.1)

where x and y are the geographic grid dimensions and    is
the ceiling function. Equation (4.1) is valid only when

()min ,p x y≤ . In the case of ()min ,p x y> it is not
possible to fully utilize all the processors; as a result the
speedup becomes constant, i.e., p is replaced with ()min ,x y
in the denominator on the right hand side of equation (4.1).
The theoretical efficiency is plotted in Fig. 5a as a function of
p for several geographic grid sizes. Peaks in efficiency,
which become more pronounced as x is increased, occur
where y p   changes (this includes where p is a divisor of
y). As y is increased the number of peaks also increases, but
the relative size of the peaks is less significant. With the
exception of a highly elongated grid, where the efficiency
peaks again at p = y, the best performance range is
where 2p y≤ . Note that when p is a divisor of both x and y
then (4.1) becomes symmetric with respect to exchange of x
and y. In general, if one chooses p such that p is a divisor of

y then the independent grid dimensions x and y become less
important and the overall grid size, that is, x⋅y, can be used
when estimating the parallel performance of a selected
application.

The measured efficiency of SWAN for a stationary
application with nonuniform currents and an 80x60 spectral
grid on a 32-processor IBM Regatta (1.3GHz Power4) is
shown in Fig. 5b. The measured efficiency is per iteration (4
sweeps). We see that the symmetries and the peak positions
of the measured efficiency agree with those of the ideal
efficiency (Fig. 5a). However the measured efficiency is
approximately 10 to 20% lower than the ideal efficiency.
This is a manifestation of mainly thread overhead and
remaining sequential portions of the program.

The parallel performance of SWAN is dependent on the
amount of work available at each geographic grid point − that
is, on the spectral dimensions and whether the submatrix is
tridiagonal or banded. The measured efficiency of SWAN
for several spectral grids with a fixed 64x64 geographic grid
is shown in Fig. 6. Although the work per geographic grid
point is higher for the 144x128 spectral grid, the best overall
performance is observed for the 36x32 spectral grid. This is
likely due to better cache utilization for the smaller spectral
grid. In the case of the 18x16 spectral grid the amount of
work available at each geographic grid point is very small.
Therefore, a large fraction of time is spent in thread
management and sequential regions of the program resulting
in a severe drop in parallel performance. This point becomes
significant when considering geographic grids that have a
large percentage of dry (land) points where computations are
skipped (although the points are still included in the
geographic grid loops).

Once the spectral dimensions and submatrix type are fixed
the parallel performance of SWAN is, in principle, dependent
only on the geographic grid dimensions and the number of
processors. However, even these three remaining parameters
present a complexity that makes complete characterization of
the parallel performance of SWAN impractical. We have
chosen to limit the characterization to those points where p is
a divisor of y (where the ideal efficiency is optimal). With
this restriction we can reasonably consider only the overall
geographic grid size when estimating the parallel
performance. Fig. 7 shows the measured efficiency as a
function of p for several geographic grids on the IBM
Regatta. The total geographic grid size is expressed in units
of 1024 using the symbol “K”. The spectral grid is fixed at
36x32. As expected the efficiency increases as the

0.4

0.5

0.6

0.7

0.8

0.9

1

Id
ea

l e
ff

ic
ie

nc
y

(a)

Geographic Grid
X= 32, Y= 32
X=128, Y= 32
X= 32, Y=128

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30

M
ea

su
re

d
ef

fi
ci

en
cy

Number of processors

(b)

Fig. 5. Ideal (5a) and measured (5b) efficiency of SWAN for
several geographic grid sizes (fixed spectral grid). The ideal
efficiency is for a single sweep as computed from (4.1). The
measured efficiency is per iteration (4 sweeps).
Measurements were performed on a 32-processor IBM
Regatta (1.3 GHz Power4).

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30

E
ff

ic
ie

nc
y

Number of processors

Spectral Grid
18 x 16
36 x 32
72 x 64

144 x 128
ideal

Fig. 6. Measured efficiency of SWAN for several spectral
grid sizes with fixed depth and no currents. The geographic
grid is fixed at 64x64.

Proceedings of the Oceans 2002 MTS/IEEE Conference, October 29-31, 2002 Biloxi, Mississippi

1238

geographic grid is increased. It appears that for large grids
(512x512 and larger) the efficiency on 16 to 32 processors
will not go much higher than 90%. Not only do the
measurements in Fig. 8 provide a better understanding of
trends, but they can also be used as a tool for estimating the
performance when setting up a regional application of
SWAN.

For an example application we consider a non-stationary
simulation of Lake Michigan with 2km spatial resolution
(126x248 geographic grid, 36x32 spectral grid). The
simulation spans four days (November 8 - 12, 1995) with a
time step of 0.1 hour, wind updates every hour, and data
output every two hours. Fig. 8 provides snapshots of
significant wave height and wave direction from November
10 and 12 of the Lake Michigan simulation. The simulations
were performed on a 32-processor IBM Regatta (1.3GHz
Power4). The sequential time for the four model day run was
about 14.5 hours. However, on 18 processors the execution
time was only about 1 hour, clearly demonstrating the benefit
of parallel processing and the viability of SWAN for
operational use.

Parallel performance measurements for the Lake
Michigan case are shown in Fig. 9. With the exception of

19p = the measurements were performed for p where the
ideal efficiency has a local maximum. As discussed above,
these are the points where y p   changes, which includes
those p where p is a divisor of y. The efficiency for the total
run was obtained by measuring the time from start to finish.
The efficiency per iteration was obtained by only measuring
the time for the iteration loop which does not include file
input and output that occurs between time steps. The data
point at 19p = is provided to show the effect of choosing p
where the ideal efficiency has a local minimum. We see that
the effect of this choice is small since for this geographic grid
size the fluctuations in ideal efficiency are only about 2%.

From Fig. 8 we can see that although the total grid size is
about 31K, the number of wet grid points is only about 13K
(44%). The importance of considering the number of wet
points when making an estimate of the parallel performance
is demonstrated in Fig. 9 where the 16K efficiency per
iteration (from Fig. 7) closely follows that of the Lake
Michigan case. The efficiency for the total run is lower than
the efficiency per iteration due to overhead from the time
stepping and the sequential file input and output. We can
make a reasonable estimate for the parallel efficiency of the

total run by measuring the execution times for various parts
of the code during a short sequential run (say 2 model hours
so as to include file input and output). Suppose, for a short
sequential run, the total time is t1 and the time spent in the
sweep portion (where parallel execution can occur) of the
code is ts1. The fraction of time spent in sequential execution
is then given by ()1 1 1s sf t t t= − , which for the Lake
Michigan case on the IBM Regatta turns out to be about 1%.
Let Ei(p) be the estimated efficiency per iteration (as obtained
from Fig. 7), then the efficiency for the total run of the Lake
Michigan case can be estimated as

 () ()
()

1
1 s

total s
i

f
E p pf

E p

−
 −

= + 
  

. (4.2)

Equation (4.2) is plotted in Fig. 9 using 1% for the sequential
fraction and the measured efficiency per iteration for a 16K
grid. The agreement between the measured efficiency and
the estimate for the total run is quite good. This establishes
that, at least for this parallel machine, the measure for the

0.4

0.5

0.6

0.7

0.8

0.9

1

5 10 15 20 25 30

E
ff

ic
ie

nc
y

Number of processors

Geographic Grid
 1 K
 4 K

 16 K
 64 K

256 K

Fig. 7. Measured efficiency of SWAN for several
geographic grid sizes with fixed depth and no currents. The
spectral grid is fixed at 36x32. Total geographic grid sizes
are listed in units of 1024 using the symbol “K”.

Day 10; Hour 12

x (km)

y
(k

m
)

0 100 200
0

100

200

300

400

0

0.5

1

1.5

2

2.5

3

3.5

4

Lake Michigan; Nov. 1995

Day 11; Hour 16

x (km)

y
(k

m
)

0 100 200
0

100

200

300

400

Fig. 8. Snapshots from a four-day simulation (November 8-
12, 1995) of Lake Michigan using hourly wind input fields.
Shading indicates the significant wave height and the arrows
indicate the wave direction.

Fig. 9. Parallel performance of SWAN on the Lake
Michigan case. The solid line with squares is the efficiency
for the complete simulation. Efficiency per iteration, which
does not include file input and output, is given by the solid
line with circles. The 16K grid efficiency is taken from the
results in Fig. 8. The estimated efficiency is obtained from
the 16K efficiency and the estimated serial fraction. The
ideal efficiency is from (4.1) with x=126 and y=248.

0.7

0.8

0.9

1

5 10 15 20 25 30

E
ff

ic
ie

nc
y

Number of processors

Total run
Per iteration

Estimate
16K grid

Ideal

Proceedings of the Oceans 2002 MTS/IEEE Conference, October 29-31, 2002 Biloxi, Mississippi

1239

sequential fraction effectively describes most of the overhead
that would arise in a parallel run. One can use the same
procedure to estimate the parallel performance of SWAN for
other regional applications.

V. SUMMARY
This paper has presented the development of a parallel

version of the advanced third-generation wave model known
as SWAN. Through careful analysis of the data and
numerical algorithms the dependencies and potential for
concurrent computation were determined. A pipelined
parallel approach was chosen and implemented using
OpenMP compiler directives which produce multithreaded
code for shared-memory multiprocessor computers. The
parallel implementation required no algorithmic changes and
is ‘bit-for-bit’ compatible with the original sequential code.
No change has been made to the user interface. An analytic
expression was derived for the ideal parallel performance
which displays the same features as the actual performance.
Numerous performance measurements demonstrate the
scalability of the parallel version of SWAN. The significant
reduction in turn-around time for both stationary and non-
stationary cases clearly establishes the viability of SWAN as
an operational model. We conclude by pointing out that all
code changes presented in this paper have been accepted by
the SWAN developers to be included in the official release.
Also, the parallel version of SWAN is presently undergoing
transition into operational use for the Navy.

Acknowledgments
This publication made possible through support provided

by DoD High Performance Computing Modernization
Program (HPCMP) Programming Environment & Training
(PET) activities through Mississippi State University under
the terms of Agreement No. # GS04T01BFC0060. The
opinions expressed herein are those of the author(s) and do
not necessarily reflect the views of the DoD or Mississippi
State University.

REFERENCES
[1] R.E. Jensen, P.A. Wittmann, and J.D. Dykes, “Global

and regional wave modeling activities,” Oceanography,
vol. 15, no. 1, pp. 57-66, 2002.

[2] G.J. Komen, L. Cavaleri, M. Donelan, K. Hasselmann, S.
Hasselmann, and P.A.E.M. Janssen, Dynamics and
Modelling of Ocean Waves, Cambridge University Press,
1994.

[3] H.L. Tolman, “A third-generation model for wind waves
on slowly varying, unsteady and inhomogeneous depths
and currents,” J. Phys. Oceanogr., vol. 21, pp. 782-797,
1991.

[4] J.M. Smith, D.T. Resio, and A.K. Zundel, “STWAVE:
steady-state spectral wave model, report 1 user’s manual
for STWAVE version 2.0,” Instr. Rep. CHL-99-1, U.S.
Army Corps of Engineers, Waterways Experiment
Station, Vicksburg, MS, 1999.

[5] N. Booij, R.C. Ris, and L.H. Holthuijsen, “A third-
generation wave model for coastal regions, 1. Model
description and validation,” J. Geophys. Res., vol. 104,
no. C4, pp. 7649-7666, April 1999.

[6] D.E.Culler, J.P. Singh, Parallel Computer Architecture:
A Hardware/Software Approach, San Francisco, CA:
Morgan Kaufmann, pp. 75-120, 1999.

[7] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J.
McDonald, and R. Menon, Parallel Programming in
OpenMP, San Francisco, CA: Morgan Kaufmann, 2001.

